ar X iv : 0 80 5 . 24 09 v 1 [ m at h . Q A ] 1 5 M ay 2 00 8 SHOIKHET ’ S CONJECTURE AND DUFLO ISOMORPHISM ON ( CO )

نویسنده

  • CARLO A. ROSSI
چکیده

In this paper we prove a conjecture of B. Shoikhet. This conjecture states that the tangent isomorphism on homology, between the Poisson homology associated to a Poisson structure on R d and the Hochschild homology of its quantized star-product algebra , is an isomorphism of modules over the (isomorphic) respective cohomology algebras. As a consequence, we obtain a version of the Duflo isomorphism on coinvariants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tsygan Formality and Duflo Formula

We prove the 0-(co)homology part of the conjecture on the cup-products on tangent cohomology in the Tsygan formality [Sh2]. We discuss its applications to the Duflo formula. A short introduction The Tsygan formality conjecture for chains [Ts] was proven in the author’s work [Sh2] by an explicit construction of suitable Kontsevich-type integrals. This paper is a further development of ideas of [...

متن کامل

On the Duflo Formula for L∞-algebras and Q-manifolds

We prove a direct analogue of the classical Duflo formula in the case of L∞algebras. We conjecture an analogous formula in the case of an arbitrary Q-manifold. When G is a compact connected Lie group, the Duflo theorem for the Q-manifold (ΠTG, dDR) is exactly the Duflo theorem for the Lie algebra g = LieG. The corresponding theorem for the Q-manifold (ΠTM,dDR), where M is an arbitrary smooth ma...

متن کامل

Convolution of Invariant Distributions: Proof of the KashiwaraVergne conjecture

Consider the Kontsevich star-product on the symmetric algebra of a finite-dimensional Lie algebra g, regarded as the algebra of distributions with support 0 on g. In this Letter, we extend this star product to distributions satisfying an appropriate support condition. As a consequence, we prove a long-standing conjecture of Kashiwara–Vergne on the convolution of germs of invariant distributions...

متن کامل

A Proof of the Tsygan Formality Conjecture for Chains

We extend the Kontsevich formality L∞-morphism U : T • poly(R ) → D poly(R ) to an L∞-morphism of an L∞-modules over T • poly(R ), Û : C•(A, A) → Ω(R), A = C(R). The construction of the map Û is given in Kontsevich-type integrals. The conjecture that such an L∞-morphism exists is due to Boris Tsygan [Ts]. As an application, we obtain an explicit formula for isomorphism A∗/[A∗, A∗] ∼ → A/{A, A} ...

متن کامل

Applications de la bi-quantification à la théorie de Lie

This article in French, with a large English introduction, is a survey about applications of bi-quantization theory in Lie theory. We focus on a conjecture of M. Duflo. Most of the applications are coming from our article with Alberto Cattaneo [13] and some extensions are relating discussions with my student [9]. The end of the article is completely new. We prove that the conjecture E = 1 impli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008